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A BINARY ARITHMETIC FOR THE FERMAT NUMBER TRANSFORM

INTRODUCTION

The discrete Fourier transform (DFT) has been defined in a finite field or ring of
integers modulo an integer M by Pollard [1]. This has led to the development of number
theoretic transforms (NTTs) with application to the computation of discrete convolution
or correlation in a manner similar to that of the fast Fourier transform (FFT) but involving
no multiplications or arithmetic roundoff error, as described in Refs. 2 through 5. The
general form of the NTT is

N-1
X(k) = L x(n)dek mod M, k = 0, 1, ... , N - 1,

n=O

where N is the sequence length, a is a root of unity of order N, and M is the modulus
describing the finite field or ring of integers [1].

Many different NTTs can be defined among the various values of a, N, and M.
Among these are transforms that can be computed in a highly efficient manner with a
equal to 2 or a power of 2, with each multiplication replaced by a single binary word
shift and an addition or subtraction. Furthermore, if N is highly composite, an FFT [6]
type algorithm can be applied to improve the efficiency of the computation.

The application of NTT transforms to digital signal-processing systems was first con-
sidered by Rader [21, who proposed the use of moduli of the form of a Mersenne num-
ber 2P - 1, p a prime, as well as the tth Fermat number Ft = 2 b + 1, b = 2t. The
Mersenne number transform (MNT) leads to a of value 2, but the corresponding N values
are not highly composite, thus preventing full use of the efficiencies of an FFT type
algorithm. The Fermat number transform (FNT) results in an a of 2 with N = 2b an
integer power of 2. An FNT with a = /¶ and N = 4b is also available, but the computa-
tion is slightly more complex.

The FNT was defined mathematically and considered in detail by Agarwal and
Burrus [3]. Their disclosure includes a software realization and an analysis of FNT con-
volution. FFT convolution is presently in common use for discrete convolution compu-
tations, as described in Ref. 7. In their realization of the FNT, Agarwal and Burrus [3]
define a binary arithmetic modulo Ft. The use of such a modulus requires b + 1 bits.
The representation of the quantity 2b = -1 mod Ft requires the (b + 1)th bit. To simplify
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School of Engineering and Applied Science.

Manuscript submitted January 2, 1976.

1



LAWRENCE M. LEIBOWITZ

modular arithmetic operations on a general purpose computer of b-bit word length, Agarwal
and Burrus limit their realization to b-bit arithmetic. This involves some input quantization
error when -1 occurs as an input sample as well as a complete data block in error when a -1
occurs as the result of an FNT computation.

It is desirable to compute the FNT exactly. The difficulties in performing exact binary
arithmetic modulo Ft become apparent when one considers, for example, multiplication
or addition in a ring of integers modulo Ft involving the binary representation of -1,
2b. For example, when b = 4, the product of 10000 (-1) with itself is 00001 (+1).

A technique for the exact computation of the FNT and its implementation are de-
scribed by McClellan [8]. McClellan's approach involves the definition of a new binary
code representation for the integers modulo Ft. Given a binary representation of b + 1
bits, A = (ab, ab-l, ... , ao), where A is some arbitrary integer modulo Ft, this new code
is described as follows:

A = 0, if ab = 1,

= ab12b-1 + ab-22b-2 + ... + ao, if ab = °

where

aj = 1 , if aj = 1 ,

= -1, if aj = 0.

Thus McClellan's representation of numbers modulo Ft involves normal binary weighting
with digits ±1. This technique results in a representation of the integer 0 as 2b in binary
notation (for b = 4, 0 is represented as 10000) and thus the (b + 1)th bit is used only to
represent 0. The presence of the extra bit in a multiplication or addition operation in-
volving the number representation for 0 is detected and the normal steps in these opera-
tions are properly inhibited in order to produce a correct result. Thus binary arithmetic
operations with a (b + 1)-bit word are effectively eliminated. McClellan shows that this
number representation provides a binary arithmetic modulo Ft for negation, addition,
and multiplication by integer powers of 2. This new arithmetic is shown to be similar
to and as complex as ordinary 1's complement arithmetic.

In this report a binary arithmetic modulo Ft of less mathematical complexity than
that of Ref. 8 will be presented. Although the translations between the quantities in the
finite ring and the number representation in this binary arithmetic are trivial, the resulting
binary arithmetic operations are identical to those of McClellan. Thus the FNT system
design presented in Ref. 8 is applicable to this new arithmetic with the exception of the
code translation, which is mathematically simpler. In addition to binary arithmetic op-
erations involved in the computation of the FNT, this report also considers general mul-
tiplication of integers modulo Ft as required in the overall computation of FNT convolution.
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CODE TRANSLATION

There are a set of code translations such that each results in the simplified binary
arithmetic modulo Ft to be described here. These translations involve the one-to-one
binary representation of an arbitrary number A in the ring of integers modulo Ft as the
binary number corresponding to RA - 1 mod Ft, where R is any integer in the ring with
an inverse. It can be shown that the code representation of McClellan [8] corresponds
to the case of R = 2 b-1 + 1, which for the case of b = 4 is R = 9. The simplest code
translation obviously occurs for R = 1 for any value of b. This report will concentrate
on the resulting binary arithmetic for the code translation corresponding to R = 1,
although the discussion can be extended in a straightforward manner to any R mod Ft
possessing an inverse.

DIMINISHED-1 NUMBER REPRESENTATION

To represent all integers in the ring of integers modulo Ft requires b + 1 bits. The
additional bit is required in order to represent the number 2 b = -1 mod Ft. To over-
come the problem of performing binary arithmetic with this additional bit, let us describe
a modified binary number system. To avoid additions and multiplications involving the
additional bit, allow the additional bit to be a 1 only when the number to be represented
is 0. This can be easily achieved by subtracting 1 from the normal binary representation
of every integer in the ring and corresponds to the above set of code translations with
R = 1. The normal representation and this diminished-1 representation are indicated in
Table 1 for b = 4.

Table 1-Correspondence Between Normal and
Diminished-i Representations (b = 4)

Binary Diminished-1Normal Value Representation Value

0 00000 1
1 00001 2
2 00010 3
3 00011 4
4 00100 5
5 00101 6
6 00110 7
7 00111 8
8 01000 9 (-8)
9 (-8) 01001 10 (-7)

10 (-7) 01010 11 (-6)
11 (-6) 01011 12 (-5)
12 (-5) 01100 13 (-4)
13 (-4) 01101 14 (-3)
14 (-3) 01110 15 (-2)
15 (-2) 01111 16 (-1)
16 (-1) 10000 0
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In the diminished-1 number representation the b least significant bits (LSBs) indicate
the value of the number. The numbers from 1 to 2b are represented in order by the
binary numbers from 0 to 2b - 1. With use of this representation the arithmetic opera-
tions necessary to perform convolution by Fermat number transforms (FNTs) will be
considered.

BINARY ARITHMETIC OPERATIONS MODULO Ft

Negation

It can be seen from Table 1 that each of the negative numbers (> 2 b-1) are the
b-LSB complement of their positive counterparts. Thus with this system the negative of
a nonzero number in diminished-1 representation is the complement of its b least signif-
icant bits. If the b-LSB complement is denoted by an overbar, this can be shown as

A - 1 = 2b - 1 - (A- 1)

= 2 b + 1 - A - 1

= (-A) - 1.

If the most significant bit (MSB) is 1, the negation is inhibited. An example of negation
is the following:

Example 1

13 = -4 mod 17 = 000ii = 01100.

Addition

To perform addition of two numbers represented as A - 1 and B - 1,

(A-1) + (B-1) = (A+B-1) - 1
and thus

(A + B- 1) = [(A- 1) + (B- 1)] + 1.

Since the (b + 1)th bit of the addends is used only to inhibit addition if an addend
is 0, addition of nonzero addends involves only the b LSBs. The preceding equations
indicate that a 1 must be added to the sum of two diminished-1 numbers to provide a
correct result. When a carry is generated from the b-bit sum, a residue reduction modulo
Ft requires the subtraction of a 1, since 2b = -1 mod Ft, and no corrective addition is
necessary.

Thus to add two numbers in diminished-1 representation: If the MSB of either
addend is 1, inhibit the addition, and the remaining addend is the sum. If the MSBs of
both addends are 0, ignore the MSBs, add the b LSBs, complement the carry, and add
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it to the b LSBs of the sum. The (b + 1)th bit or MSB of the resulting sum, is the carry
from the bth bit.

Examples of addition are the following:

Example 2 Example 3

add 10000 0 add 00111 8
00100 5 01101 14

00100 5 10100 22 = 5mod 17

0
00100

Example 4 Example 5

add 00011 4 add 00100 5
00101 6 01011 12 = -5 mod 17
01000 10 01111 17 = 0 mod 17

\14 \- 1
01001 10000

Code Translation

Using the preceding description of diminished-1 addition, we can present rules for
the translation between a binary number B and its diminished-1 representation D.

To translate from binary to diminished-1 representation, perform a diminished-1
addition of B and the binary representation of 2b - 1.

Examples of translation from a binary number B and its diminished-1 representation
D are the following:

Example 6 Example 7

B = 01100 = 12 B = 00000 = 0
01111 01111

11011 01111

01

D = 01011 D = 10000

To translate from diminished-1 to binary representation, complement the MSB of D
and add it to the b LSBs.

Examples of translation from a diminished-1 representation D to a binary number B
are the following:
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Example 8 Example 9

D = 01011 = 12 D = 10000 = 0

\1 0
B = 01100 B = 00000

Subtraction

Having defined negation and addition in the diminished-1 number system, we can
perform subtraction by negating the subtrahend and adding it to the minuend, as in the
following example:

Example 10

subtract 7 00110
-5 01011

2 10001

NNNo

00001 = 2

Multiplication by Powers of 2

In performing a multiplication, if the multiplier or multiplicand is 0, as detected by
the presence of a 1 in the (b + 1)th bit, the multiplication is inhibited and the product
is 0. To perform multiplication of diminished-1 numbers by powers of 2 let us consider
the following:

(A- 1) * 2 = (2A- 1) - 1

and thus

(2A- 1) = (A- 1) - 2 + 1.

Therefore each multiplication by 2 involves a left shift, ignoring the MSB, and a cor-
rective addition of a 1. If the bit shifted out from the bth position is a 0, it is comple-
mented and shifted into the LSB in order to accomplish the addition of a 1. If this bit
is a 1, a subtraction of 1 is also required to accomplish a residue reduction. With the
corrective addition of +1, these cancel out and a 0 is shifted into the LSB. Thus for each
factor of 2 a left circular shift of the b LSBs is required and the bit circulated into the
LSB is complemented. For negative powers of 2 a right circular shift is performed with
bits circulated to the bth bit (second MSB) complemented. (Multiplication by negative
powers of 2 can also be performed using a positive power of 2 followed by a negation.
(For example, 2 -k = 2 N k = 2b * 2 N-b-k = - 2 b-k, where N and b are as previously de-
fined and k < b.)

An example of multiplication by powers of 2 is the following:
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Example 11

8X 11 = 23 X 11 = 2X 2X 2X 11 = 88 = 3modi7

11 01010
2X 11 00100
4X 11 01001
8X 11 00010 = 3 mod 17

To realize the full efficiency of the FNT, it is necessary to accomplish multiplication
by powers of 2 by a single multibit shift. The preceding procedure can be extended in a
straightforward manner to provide such multiplication.

General Multiplication

The last operation required to carry out convolution with the Fermat number trans-
form (FNT) is a general multiplication by any two integers modulo Ft. A multiplication
of the numbers A and B represented as A - 1 and B - 1 in the diminished-1 number sys-
tem is performed as

(A- 1)(B- 1) = A B - (A +B) + 1

= (A- B-1) - (A+B-1) + 1,

and the desired result is

(A * B- 1) = (A- 1)(B- 1) + (A + B- 1) - 1.

Thus, to carry out such an operation, ignore the MSB, perform a binary multiplica-
tion of the diminished-1 representations of A and B, add this result to the b LSBs of the
diminished-1 addition of A and B, and then perform a residue reduction by a diminished-1
subtraction of the b-MSBs from the b-LSBs. (This particular general multiplication scheme
is not applicable with code translations other than that corresponding to R = +1.) As
discussed previously, if the MSB of either multiplier or multiplicand is 1, the multiplica-
tion is inhibited and the result is set to 0.

An example of general multiplication is the following:

7
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Example 12

multiply 15
X10
150 = 14mod17

binary multiply

binary add

residue reduction

01110
01001

1110
0111000
01111110

00111-
10000101

._.

0111
01100

01101

diminished-1 add

= 14 mod 17

An alternate multiplication technique can also be considered. Assuming that the
numbers are determined to be nonzero and a multiplication is required, a translation to
normal binary coding is completed. Following a binary multiplication, a residue reduc-
tion by diminished-1 subtraction of the b MSBs of the product from the b LSBs is per-
formed. The result is the desired product. This is a realization of the equation (A. B - 1)
= A * B - 1.

An example of this alternate technique of general multiplication is the following:

Example 13

multiply

translate

translate

15
X10
150 = 14 mod 17

01110 binary multiply 01111

\X4,1 010101 //11110
01111 110

10010110
01001

1 residue reduction 0110
01010 01100

01
01101 = 14 mod 17

8
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Another general multiplication technique involves a translation of either the multi-
plier or the multiplicand to normal binary form, the other remaining in diminished-1
representation. The operations involved in comparison to the previous techniques include
a diminished-1 to binary translation and a general diminished-1 addition.

In comparing these general multiplication schemes, several factors should be con-
sidered. The basic tradeoff involves the general diminished 1 and binary additions as
compared to the translation of numbers in diminished-1 representation to normal binary
representation. The remaining operations of binary multiplication, residue reduction in
diminished-1 notation, and multiplication by 0 are identical in the various techniques.
Since in most cases the translation from diminished-i to binary will be simpler and faster
than a general binary or diminished-1 addition, the second technique is preferable to the
others.

COMPARISON OF DIMINISHED-1 AND NORMAL-BINARY EFFICIENCY

The preceding diminished-1 procedures accomplish exact arithmetic modulo Ft by a
code translation that represents 0 by the (b + 1)th bit with arithmetic operations that
treat 0 as a special case. It is thus logical to consider a set of procedures that operate on
normal binary representations with special rules for handling -1 as indicated by the
(b + 1)th bit. An arithmetic using such procedures to compute the FNT exactly would
be an extension of the b-bit approximate arithmetic modulo Ft of Agarwal and Burrus [3]
described by the following rules:

* Negation-Complement each bit and add 2 to the result.

* Addition-Add the two b-bit integers and end-around subtract any carry bit.

* Subtraction-Negate the subtrahend and add the result to the minuend.

* General multiplication-Multiply and get CL + CH2b, where CL and CH are
words formed from the b least and most significant bits respectively, and from
CL subtract CH mod Ft.

* Multiplication by a power of 2-To multiply by 2 k, load the data in the lower
half of a 2b-bit double register, shift left k positions, and from CL subtract CH
mod Ft. To multiply by 2 -k, load the data in the upper half of a 2b-bit double
register, shift right k positions, and from CH subtract CL mod Ft.

Any extension of these rules in order to accomplish the exact FNT computation
using b + 1 bits can only be less efficient with respect to the number of operations re-
quired. Thus if it can be shown that b + 1 bit diminished-1 exact arithmetic modulo Ft
is more efficient than the b-bit approximate arithmetic modulo Ft of Agarwal and
Burrus [3], it can be assumed to be even more efficient than any extension of the latter.

To compare the arithmetics, the number of basic binary arithmetic operations (addi-
tions, multiplications, shifts) involved in computing an N-point FNT convolution will be
considered for each. An FNT convolution computation is assumed to consist of two
FNTs followed by N general multiplications, N divisions by N, and another FNT. Addi-
tionally the diminished-1 computation requires N encode and decode operations. Any
sequence reordering procedures required in an actual computation of FNT convolution do

9
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not depend on the arithmetic used and are thus not considered here. It is assumed that
the complexity of a subtraction is equivalent to that of an addition and that complemen-
tation can be neglected.

Considering the b-bit approximate arithmetic first, the complexity of arithmetic
modulo Ft in terms of basic binary operations is indicated in Table 2. There are (N/2)
log2 N butterfly operations in any of the standard FFT algorithms. Since each butterfly
consists of an addition, subtraction, and multiplication by 2k, each FNT requires

5N log2 N binary additions

and
N
2 log 2 N binary shifts.

In computing the convolution there are N general multiplications requiring

N binary multiplications

and

4N binary additions,

and there are N divisions by N requiring

N binary shifts

and

4N binary additions.

The total number of basic binary operations for FNT convolution with b-bit arith-
metic is then

15N log2 N + 8N binary additions,

3N
2 log2 N + N binary shifts,

and

N binary multiplications.

Table 2-Basic Binary Operations for FNT Convolution Using b-Bit Arithmetic

Mod Ft Operation Basic Binary Operation I Number of Operations

Addition Addition 2

Subtraction Addition 4

Multiplication by 2 k Shift 1
Addition 4

General multiplication Multiplication 1
Addition 4

10
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For the (b + 1)-bit diminished-1 exact arithmetic the complexity of arithmetic modulo
Ft in terms of basic binary operations is indicated in Table 3. Thus there are

5N binary additions

involved in the code translations. Each FNT requires

2N log 2 N binary additions

and

N
2 1g 2 N binary shifts.

The general multiplication consists of

4N binary additions

and

N binary multiplications,

and division by N requires

N binary shifts.

The total number of basic binary operations for FNT convolution using b + 1 bit diminished-1
arithmetic is thus

6N log2 N + 9N binary additions,

3N
2 1og 2 N + N binary shifts*,

and

N binary multiplications.

Table 3-Basic Binary Operations for FNT Convolution
Using (b + 1)-Bit Diminished-i Arithmetic

Mod Ft Operation Basic Binary Operation I Number of Operations

*The diminished-1 multiplication by 2 k requires only b-bit registers, whereas the other procedure requires
2b-bit registers.

11

Encode Addition 2

Decode Addition 1

Addition Addition 2

Subtraction Addition 2

Multiplication by 2 k Shift 1

General multiplication Multiplication 1
Addition 4
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The total number of shifts and multiplications is the same for both arithmetic modulo
Ft procedures, but the number of additions is significantly less for diminished-1 arithmetic.
Let K be the ratio of b-bit normal binary to (b + 1)-bit diminished-1 total additions. Then

15 log2 N + 8

6 log 2 N + 9

with the values of K indicated in Table 4 for various values of N. The number of additions
required for computation of FNT convolution using b-bit approximate arithmetic is thus
about twice that required using (b + 1)-bit diminished-1 exact arithmetic. For a typical
hardware multiplication time of about 5 times that of an addition and with increasing
N > 16, the additions become the most significant portion of the FNT convolution com-
putation. Under these conditions K is an approximate measure of the relative complexity
of the two arithmetics. Thus any extension of the b-bit approximate binary arithmetic
modulo Ft of Agarwal and Burrus [3] to (b + 1)-bit exact arithmetic will be significantly
less efficient than the (b + 1)-bit diminished-1 exact binary arithmetic presented in this
report. If it is desired to limit binary arithmetic to b bits with resulting approximation,
it is more efficient to use diminished-1 arithmetic without a representation for 0 mod Ft
than the arithmetic of Agarwal and Burrus.

CONCLUSION

A binary arithmetic applicable to the exact computation of the Fermat number trans-
form has been presented. This arithmetic involves operations on a binary representation
of the integers modulo Ft diminished by 1. This diminished-1 representation is mathe-
matically simpler than that of McClellan [8], both being among a general set of such
binary code translations. This arithmetic provides simple realizations of all the operations
required to compute the Fermat number transform. These operations are identical to
those described and implemented by McClellan [8] and are of the complexity of 1's com-
plement arithmetic. The general multiplication of two integers modulo Ft in diminished-1
representation can be accomplished in a straightforward manner. The diminished-1 exact
arithmetic is shown to be more efficient than the b-bit approximate arithmetic of Agarwal
and Burrus [3] and thus more efficient than any extension of it to (b + 1)-bit exact
arithmetic.

Table 4-Ratio of the Number of Basic Binary
Additions Required for FNT Convolution
Using b-Bit Arithmetic to that of (b + 1)-Bit
Diminished-1 Arithmetic for Various Values
of N

N K [fN K

8 1.96 64 2.18
16 2.06 128 2.22
32 2.13 00 2.5
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